您好!欢迎光临工博士智能制造网!
15601785639
您好,欢迎光临工博士,我们将竭诚为您服务 点击这里给我发消息
您当前的位置:首页 » 新闻中心 » ABB机器人代理商---高手总结:各种机器学习算法之比较,评价太到位了
产品分类
新闻中心
ABB机器人代理商---高手总结:各种机器学习算法之比较,评价太到位了
发布时间:2020-05-19        浏览次数:73        返回列表

机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常***开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,***好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到***优解,***后选择***好的一个。但是如果你只是在寻找一个“足够好”的算法来解决你的问题,或者这里有些技巧可以参考,下面来分析下各个算法的优缺点,基于算法的优缺点,更易于我们去选择它。
偏差&方差
在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们先来普及一下偏差和方差:
偏差:描述的是预测值(估计值)的期望E’与真实值Y之间的差距。偏差越大,越偏离真实数据。

方差:描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。

模型的真实误差是两者之和,如下图:

如果是小训练集,高偏差/低方差的分类器(例如,朴素贝叶斯NB)要比低偏差/高方差大分类的优势大(例如,KNN),因为后者会过拟合。但是,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差分类器就会渐渐的表现其优势(因为它们有较低的渐近误差),此时高偏差分类器此时已经不足以提供准确的模型了。
当然,你也可以认为这是生成模型(NB)与判别模型(KNN)的一个区别。
为什么说朴素贝叶斯是高偏差低方差?
以下内容引自知乎:
         首先,假设你知道训练集和测试集的关系。简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢?
由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的***而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。
        在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias + Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。
          所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被严重简化了的模型。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。
在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。
偏差和方差与模型复杂度的关系使用下图更加明了:

当模型复杂度上升的时候,偏差会逐渐变小,而方差会逐渐变大。
常见算法优缺点
1.朴素贝叶斯
        朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否是要求联合分布),非常简单,你只是做了一堆计数。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。
优点:
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
对小规模的数据表现很好,能个处理多分类任务,适合增量式训练;
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
需要计算先验概率;
分类决策存在错误率;
对输入数据的表达形式很敏感。
2.Logistic Regression(逻辑回归)
属于判别式模型,有很多正则化模型的方法(L0, L1,L2,etc),而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与SVM机相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法,online gradient descent)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。
Sigmoid函数:

优点:
实现简单,广泛的应用于工业问题上;
分类时计算量非常小,速度很快,存储资源低;
便利的观测样本概率分数;
对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;
缺点:
当特征空间很大时,逻辑回归的性能不是很好;
容易欠拟合,一般准确度不太高
不能很好地处理大量多类特征或变量;
只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
对于非线性特征,需要进行转换;


本文摘自:网络 日期:2020-05-19
详情点击:ABB机器人代理商

 

联系热线:156 0178 5639 联系人:黄经理 联系地址:上海市宝山区富联一路98弄6号

技术和报价服务:星期一至星期六 8:00-22:00 ABB机器人系统集成商